eduardo.wtf
Published on

An exploration of Polynomial Interpolation

Authors
  • avatar
    Name
    Eduardo Escoto
  • Ph.D. Student at UC San Diego

Interpolating Polynomials


! pip install numpy matplotlib --quiet
import numpy as np
from matplotlib import pyplot as plt

The Lagrangian Form of P2P_2

Given the data points in the table below, we can use the lagrangian form to get a second-degree polynomial which we can use to estimate our unknown function, ff.

xjx_{j}f(xj)f(x_{j})
0011
1111
335-5

The Lagrangian form of P2P_{2} is written as p2(x)=l0(x)f(x0)+l1(x)f(x1)+l2(x)f(x2)p_{2}(x) = l_{0}(x)f(x_{0}) + l_{1}(x)f(x_{1}) + l_{2}(x)f(x_{2}) Where lj(x)l_{j}(x) is defined as
lj=k=0,kjnxxkxjxkl_{j} =\prod^{n}_{k=0, k\neq j} \frac{x-x_{k}}{x_{j}-x_{k}}

Thus we have p2p_{2}: p2(x)=x2+x+1p_{2}(x)= -x^{2}+x+1 is the interpolating polynomial.

Using P2P_{2} to approximate f(2)f(2)

Plugging in 22 into our polynomial P2P_2 from above gives: f(2)p2(2)=(2)2+2+1=4+3=1    f(2)1f(2)\approx p_{2}(2) = -(2)^2 + 2 +1 = -4 + 3 = -1 \implies f(2)\approx -1

Which we can visualize in the graph below for our given data, and test point at x=2x=2.

x = np.linspace(-5,6, 1000)
points = [(0,1),(1,1),(3, -5)]

p_2 = lambda x: -(x**2) + x + 1

fig, ax = plt.subplots(figsize = (9, 6))

ax.plot(x, p_2(x), color = "black", alpha = .5, linestyle="--", label="$x^2$")
ax.scatter(*zip(*points), color = "red", label="Given Data")
ax.scatter(2,p_2(2), color = "green", label="Test Point")
ax.legend()
ax.set_title("$P_{2}$, Given Data, and Test Point");

png


Lebesgue Interpolation

We can prove that

fpn(1+Λn)fpn\begin{equation} {\lVert f - p_{n}\rVert}_{\infty} \leq (1 + \Lambda_{n}){\lVert f - p^{*}_{n}\rVert}_{\infty} \end{equation}

where pnp_{n} is the interpolating polynomial of ff at the nodes x0,,xn,pnx_{0}, \dots, x_{n}, p^{*}_{n} is the best approximation of ff, in the supremum (infinity) norm, by a polynomial of at most nn, and Λn\Lambda_{n} is the Lebesgue constant, i.e. Λn=Ln\Lambda_{n} = {\lVert L_{n}\rVert}_{\infty}, where

Ln(x)=j=0nlj(x)\begin{equation} L_{n}(x) = \sum^{n}_{j=0}\lvert l_{j}(x)\rvert \end{equation}

Of which we can write some python to evaluate the Lebesgue function (2) associated to a given set of pairwise distinct nodes x0,,xnx_{0},\dots , x_{n}.

def equidist_x(n):
    return np.array([-1 + k*(2/n) for k in range(n+1)])
def cheby_x(n):
    return np.array([np.cos((k*np.pi)/n) for k in range(n+1)])

def LagrangeCoeff(X, j):
    # Gets jth element
    x_j = X[j]
    # Removes the jth element so we can use vectorize operations
    X = np.delete(X,j)
    # Returns a function to be evaluated at the function value
    return lambda x: (np.prod(x - X))/(np.prod(x_j-X))

def LebesgueFunction(X, vectorized = True):
    # Creates all of the l_js
    LAGCoeffs = np.array([LagrangeCoeff(X, i) for i in range(len(X))])
    LebFunc = lambda x: np.sum([np.abs(LAG(x)) for LAG in LAGCoeffs])

    if vectorized:
        return lambda X: np.array([LebFunc(x) for x in X])
    else:
        return LebFunc

def plotL_n(x_j, L_n, ax = None):

    if ax is None:
        fig, ax = plt.subplots(figsize = (6,4))

    n_e = 1000
    n = str(len(x_j)-1)
    x_points = equidist_x(n_e)
    y_points = L_n(x_points)
    max_Lambda = np.max(y_points)
    Title = "Max $\Lambda_{" + str(n) + "}=" + str(max_Lambda) + "$"
    ax.plot(x_points, y_points, label = "$L_{"+str(n) + "}$")
    ax.hlines(y = max_Lambda, xmin = -1,xmax = 1,
              linestyle = "--", alpha = .5, label="$|| L_{"+str(n) + "}||_{\infty}$")
    ax.legend()
    ax.set_title(Title)
    return (ax, max_Lambda)

If we consider the equidistributed points xj=1+j(2/n)x_{j} = -1 + j(2/n) for j=0,,nj = 0,\dots,n. We can plot Ln(x)L_{n}(x) (evaluate Ln(x)L_{n}(x) at a large number of points xˉk\bar{x}_{k} to have a good plotting resolution, e.g. xˉk=1+k(2/ne),k=0,,ne\bar{x}_{k} = -1 + k(2/n_{e}), k = 0, \dots, n_{e} with ne=1000n_{e} = 1000) for n=4,10, and 20n = 4, 10, \text{ and } 20. And then estimate Λn\Lambda_{n} for these three values of nn.

N = [4, 10,20]

fig, ax = plt.subplots(len(N), figsize = (14,10))
fig.subplots_adjust(hspace=.5)

for i, n in enumerate(N):
    x_j = equidist_x(n)
    L_n = LebesgueFunction(x_j)
    ax[i], max_l = plotL_n(x_j, L_n, ax[i])
    print("The max for n = " + str(n) +" is "+ str(max_l))
The max for n = 4 is 2.207824277504
The max for n = 10 is 29.898141093562177
The max for n = 20 is 10979.243923985841

png

Where we see that for the equidistant nodes above, that the Lebesgue constant is being defined by the behavior at the edges of our range.

Lebesgue Interpolation with Chebysheve Nodes

If we instead repeat the above for the Chebyshev nodes xj=cos(jπn),j=0,,nx_{j} = \cos\left(\frac{j\pi}{n}\right), j = 0,\dots, n. We can see different behavior of Ln(x)L_{n}(x) and Λn\Lambda_{n} with those corresponding to the equidistributed points.

N = [4,10,20]

fig, ax = plt.subplots(len(N),figsize = (14,10))
fig.subplots_adjust(hspace=.5)

for i, n in enumerate(N):
    x_j = cheby_x(n)
    L_n = LebesgueFunction(x_j)
    plotL_n(x_j, L_n, ax[i])

png

As can be seen above, the Chebyshev nodes seem to obtain their max close to zero as n increases, however, with the equidistant nodes, the max seems to be acheived closer to the bounds of the interval, namely near 1-1 or 11. Additionally Λn\Lambda_{n} tends to grow much faster with the equidistant nodes, where with the Chebyshev nodes, it grows much slower.


Interpolating Arbitrarily distributed Nodes

We can use the Barycentric Formula for evaluating the interpolating polynomial for abritrarily distributed nodes x0,,xnx_{0}, \dots,x_{n}

def BaryWeights(X):
    n = len(X)
    l = np.empty(n)
    for k in range(n):
        l[k] = 1 / np.prod(X[k] - X[np.arange(n) != k])
    return l

def BaryFormula(X, F_x, l=None , vectorized = True):
    n = len(X)
    N = len(x)
    l = BaryWeights(X) if l is None else l

    def BaryFunc(x):
        p = 0
        # Compute quotient of weighted sums
        z = x - X
        j = np.count_nonzero(z == 0)
        if j != 0:
            p = F_x[z == 0]
        else:
            mu = l / z
            p = np.sum(mu * F_x) / np.sum(mu)
        return p

    if vectorized:
        return lambda points: np.array([BaryFunc(x) for x in points], dtype='object')
    else:
        return BaryFunc

Here we test it with just a regular degree 3 polynomial!

nodes = np.linspace(-1, 1, 5)
data = nodes**3
points = np.linspace(-1, 1, 100)
p = BaryFormula(nodes, data)

fig, ax = plt.subplots(figsize = (10,7))

ax.plot(nodes, data, 'o', label='Data')
ax.plot(points, p(points), '-', label='Interpolation')
ax.plot(points, points**3, '-', label='Function')
ax.legend();

png

Consider the following table of data

xjx_{j}f(xj)f(x_{j})
0.000.000.00000.0000
0.250.250.70700.7070
0.520.521.00001.0000
0.740.740.70710.7071
1.281.280.7074-0.7074
1.501.501.0000-1.0000

Here we show what the function looks like from our interpolation!

nodes = np.array([0,.25,.52,.74,1.28,1.50])
data = np.array([0,0.7070,1,0.7071,-0.7074,-1.0])
points = np.linspace(-.5, 2, 100)

p = BaryFormula(nodes, data)

fig, ax = plt.subplots(figsize = (10,7))

ax.plot(nodes, data, 'o', label='Data')
ax.plot(points, p(points), '-', label='Interpolation')
ax.legend();

png

And the P5P_{5} interpolation of f(2)f(2) is

(BaryFormula(nodes, data, vectorized = False))(2)
-2.343829608172828

The Runge Example

Let

f(x)=11+25x2 with x[1,1]\begin{equation} f(x) = \frac{1}{1+25x^{2}} \text{ with } x\in [-1,1] \end{equation}

And lets interpolate with both:

(a) The equidistributed nodes xj=1+j(2/n),j=0,,nx_{j} = -1 + j(2/n), j = 0,\dots, n for n=4,8, and 12n = 4,8,\text{ and } 12.

(b) The Chebyshev nodes xj=cos(jπn),j=0,,nx_{j} = \cos\left(\frac{j\pi}{n}\right), j = 0, \dots, n for n=4,8,12, and 100n = 4,8,12,\text{ and } 100.

Where we use the barycentric weights for the equidistributed nodes

λj=(1)j(nj) for j=0,,n\begin{equation} \lambda_{j} = {\left(-1\right)}^{j} {n\choose j} \text{ for } j = 0,\dots, n \end{equation}

and for the Chebyshev nodes we can use

λj={12(1)jfor j=0 or j=n(1)jfor j=1,,n1\begin{equation} \lambda_{j} = \begin{cases} \frac{1}{2}\left(-1\right)^{j} & \text{for } j = 0 \text{ or } j = n \\ \left(-1\right)^{j} & \text{for } j = 1,\dots, n-1 \end{cases} \end{equation}
def plotB_n(x_j, B_n, f_x, ax = None):

    if ax is None:
        fig, ax = plt.subplots(figsize = (6,4))

    n_e = 1000
    n = str(len(x_j)-1)
    x_points = equidist_x(n_e)
    y_points = B_n(x_points)
    max_Lambda = np.max(y_points)
    Title = "Barycentric Interpolation with $" + str(n) + "$ nodes"
    ax.plot(x_points, y_points, label = "Interpolation")
    ax.plot(x_points, f_x(x_points), label = "Data")
    ax.legend()
    ax.set_title(Title)
    return ax
f_x = lambda x: 1/(1+25*(x**2))
def EquidistantBaryWeights(X):
    from scipy.special import comb
    n = len(X)
    return np.array([((-1)**j)*comb(n-1, j) for j in range(n)])
N = [4,8,12]

fig, ax = plt.subplots(len(N),figsize = (14,10))
fig.subplots_adjust(hspace=.5)

for i, n in enumerate(N):
    x_j = equidist_x(n)
    f_x_j = f_x(x_j)
    l = EquidistantBaryWeights(x_j)
    B_n = BaryFormula(x_j, f_x_j, l = l)
    plotB_n(x_j, B_n, f_x, ax[i])

png

Chebyshev Nodes

The Chebyshev nodes xj=cos(jπn),j=0,,nx_{j} = \cos\left(\frac{j\pi}{n}\right), j = 0, \dots, n for n=4,8,12, and 100n = 4,8,12,\text{ and } 100.

def ChebyBaryWeights(X):
    n = len(X)
    l = np.array([float((-1)**j) for j in range(n)])
    l[0] = l[0]/2
    l[-1] = l[-1]/2
    return l
N = [4,8,12, 100]

fig, ax = plt.subplots(len(N),figsize = (14,10))
fig.subplots_adjust(hspace=.5)

for i, n in enumerate(N):
    x_j = cheby_x(n)
    f_x_j = f_x(x_j)
    l = ChebyBaryWeights(x_j)
    B_n = BaryFormula(x_j, f_x_j, l = l)
    plotB_n(x_j, B_n, f_x, ax[i])

png

Error analysis

Plotting the error en=fpne_{n} = f-p_{n} for (a) and (b)

e_n = lambda x, f_x, B_n: f_x(x)-B_n(x)

N = [4,8,12]

fig, ax = plt.subplots(len(N),figsize = (14,10))
fig.subplots_adjust(hspace=.5)

for i, n in enumerate(N):
    x_j = cheby_x(n)
    f_x_j = f_x(x_j)
    l = EquidistantBaryWeights(x_j)
    n_e = 1000
    x_points = equidist_x(n_e)
    B_n = BaryFormula(x_j, f_x_j, l = l, vectorized=True)
    ax[i].plot(x_points, e_n(x_points, f_x, B_n), label = "error")
    ax[i].set_title("Error with $" + str(n) + "$ nodes")
    ax[i].hlines(0, -1,1,linestyle = "--", alpha = 0.6, color = "red", label = "$y=0$")
    ax[i].legend()

png

In the above graphs you see that the error is very small around x=0x=0 which is what we would expect as seen in the graph above, the equidistant nodes tend to be very close to the function using Barycentric interpolation.

e_n = lambda x, f_x, B_n: f_x(x)-B_n(x)

N = [4,8,12, 100]

fig, ax = plt.subplots(len(N),figsize = (14,10))
fig.subplots_adjust(hspace=.5)

for i, n in enumerate(N):
    x_j = cheby_x(n)
    f_x_j = f_x(x_j)
    l = ChebyBaryWeights(x_j)
    n_e = 1000
    x_points = equidist_x(n_e)
    B_n = BaryFormula(x_j, f_x_j, l = l, vectorized=True)
    ax[i].plot(x_points, e_n(x_points, f_x, B_n))
    ax[i].set_title("Error with $" + str(n) + "$ nodes")
    ax[i].hlines(0, -1,1,linestyle = "--", alpha = 0.6, color = "red", label = "$y=0$")
    ax[i].legend()

png

In the above graphs you see that the error is very small around x=1,0,1x=-1,0,1 which is what we would expect as seen in the graphs above, the chebyshev nodes tend to be very close to the function using Barycentric interpolation on the edges and the origin, however they tend to be farther in between the origin and the edges.

Another Test

For f(x)=ex2f(x) = e^{x^{2}} for x[1,1]x\in \left[-1, 1\right]

f_x = lambda x: (np.e)**(x**2)
N = [4,8,12]

fig, ax = plt.subplots(len(N),figsize = (14,10))
fig.subplots_adjust(hspace=.5)

for i, n in enumerate(N):
    x_j = equidist_x(n)
    f_x_j = f_x(x_j)
    l = EquidistantBaryWeights(x_j)
    B_n = BaryFormula(x_j, f_x_j, l = l)
    plotB_n(x_j, B_n, f_x, ax[i])

png

Here we can see that the equidistant nodes tend to be a very good approximation for the function. Even at 44 nodes, the function seems to be very close, and even the error looks to be very small. As nn increases, we see it match the function pretty much perfectly. Below I will also plot the error which will reveal that the error is very small on this interval.

e_n = lambda x, f_x, B_n: f_x(x)-B_n(x)

N = [4,8,12]

fig, ax = plt.subplots(len(N),figsize = (14,10))
fig.subplots_adjust(hspace=.5)

for i, n in enumerate(N):
    x_j = cheby_x(n)
    f_x_j = f_x(x_j)
    l = EquidistantBaryWeights(x_j)
    n_e = 1000
    x_points = equidist_x(n_e)
    B_n = BaryFormula(x_j, f_x_j, l = l, vectorized=True)
    ax[i].plot(x_points, e_n(x_points, f_x, B_n), label = "error")
    ax[i].set_title("Error with $" + str(n) + "$ nodes")
    ax[i].hlines(0, -1,1,linestyle = "--", alpha = 0.6, color = "red", label = "$y=0$")
    ax[i].legend()

png

As seen above, the max error at 1212 nodes is about 0.0000100.000010, that is very good for the low computation cost it took.